Suomalaisessa twitterissä kuluneen kuukauden aikana on vaikea ollut välttyä #mmkisat-tägiltä. En itse ole aiemmin kohdannut näin laajassa käytössä olevaa ja pitkäikäistä tägi-meemiä (tuleeko muille mieleen mitään?).

No, luonnollisesti minua kiinnostaa myös se, mitä toistuvia rakenteita tweettien taustalla on: kuinka paljon puhutaan, milloin puhutaan ja ketkä puhuvat. Kysymykset eivät ole vähäpätöisiä sillä mielestäni twitterin ja sosiaalisen median järjestelmällistä seurantaa tehdään aivan liian vähän. Tässä on kerätty muutama esimerkki, mitä twitter-tapahtumasta voidaan saada irti.

Keräsin kaikki #mmkisat-tägillä varustetut tweetit ajalla 5.5.-23.5.2012 yourTwapperKeeper-työkalulla. Verkostot visualisoin Gephillä.

Perustietoja:  18 päivän ajanjaksolla tuli huimat 38064 tweettiä, eli keskimäärin yli 2000 tweettiä per päivä! Yhteensä 3399 eri toimijaa tweettasi jokainen keskimäärin 11 kertaa. Yli puolet tweettasi kuitenkin vain kaksi kertaa. Tweettajista 130 ahkerinta tuottivat yli puolet tweeteistä, eli loppujen lopuksi äänessä oli eniten pienehkö joukko (4 % kokonaisjoukosta), jotka onnistuivat tuomaan mukaan loputkin kolmisen tuhatta henkilöä. Ahkerin tweettaaja oli Urheilulehden uutispäällikkö @EskoSeppanen 994:llä tweetillä, toisena @Valonkuvaaja 810 tweetillä ja kolmantena Jääkiekkoliiton virallinen tili @leijonat 759 tweettiä.

Suurimmat piikit päivistä olivat sunnuntaisin, jolloin tuli neljännes kaikista tweeteistä.

Toukokuun 17. päivä oli taas kiivain tweettauspäivä. Iltapelit saivat aikaan eniten tweettejä.



Tweettaajista 2310 mainitsi jonkun toisen. Tästä saamme keskusteluun osallistumisprosentiksi 68 %. Eli yli kaksi kolmannesta tweettaajista otti twitterin sosiaalisen ulottuvuuden käyttöön.

Alla oleva kuvat on tehty keräämällä tweettien sisällä olevat maininnat. Jos esimerkiksi @KKammola mainitsee @leijonat, piirretään toimijoiden välille yhteys. Toistetaan prosessi kaikkien toimijoiden kesken ja saamme lopulta alla olevan kuvan, jossa tweettaajan nimen kokoa kasvattaa tämän saama mainintojen lukumäärä. Väri määrittää “yhteisön”, eli tässä tapauksessa taipumuksen mainita samoja henkilöitä ristiin.

Verkostossa @EskoSeppanen, sai yhteensä 1301 mainintaa 645:ltä tweettaajalta, @KKammolla 1018 mainintaa 521 tweettaajalta. Virallinen @leijonat oli kolmas 764 maininnalla ja nämä maininnat tulivat 233 eri tweettaajalta. Aikaisemmin mainittu 4 %:n joukko, joka tuotti suurimman osan sisällöstä muodosti myös puolet eniten mainintoja saaneesta joukosta. Jos mainintojen lukumäärä katsottaisiin tässä onnistumisen mittariksi (kuinka suuren huomioarvon tweettaaja saa), niin @ESkoSeppanen sai yhdellä omalla tweetillä keskimäärin 1,31 vastausta, @leijonat 1,01 ja @KKammola todella hyvän 2,83. Tästä saa jonkinlaisen ROC-arvon siis laskettua.

Kuva muistuttaa kuitenkin jotain, mitä Nyan Cat rykäisisi matolle. Pohjalla olevan rakenteen selvittääksemme siivosin kuvasta pois sellaiset toimijat, jotka eivät saaneet yhtään mainitaa ja sellaiset yhteydet, jotka toistuivat alle kolme kertaa. Tuloksena on selkeämpi kuva mm2012-twitter-keskustelua tukevasta vuorovaikutus- ja viestintäsuhteista.

Itselle mielenkiintoisin havainto oli, että alle 5 % tuotti suurimman osan sisällöstä ja että itse asiassa tämä aktiivisten joukko herätti myös eniten keskustelua. Mutta ei kuitenkaan kaikkea keskustelua, ja tämä tulee muistaa kun mietitään viestinnän analyysissä äänekkäimpien huomioista: huutajat eivät aina välttämättä muodosta keskustelua. Yhtäkaikki, hauskaa nähdä, että twitter alkaa ottaa paikkaansa myös suomalaisessa mediakentässä.

EDIT: Korjasin #mm2012 -> #mmkisat-tägiksi (oli alunperinkin). Edit 2: Esko Seppänen korjattu päätoimittajasta uutispäälliköksi, kiitos Niku.

twitter: jattipaa

www.verkostoanatomia.fi

facebook: Verkostoanatomia

Advertisements

Verkostoanalyysilla voidaan selvittää paljon monimutkaisia ja piileviä kuvioita. Yksi esimerkki on yritysten hallitusten väliset verkostot. Maailmalla tästä on ihan hienoja sovelluksia kuten They Rule.

Tällaisten verkostojen tekeminen ei välttämättä ole vaikeaa, se on vain työlästä. Tässä on ohjeet siihen, miten itse voit visualisoida esim. hallitusten välisiä verkostoja. Esimerkkinä käytän Kauppalehdessä 26.3.2012 tekemääni analyysiä valtionyhtiöiden hallitusten verkostoista, mutta menetelmää voi käyttää muissakin verkostoissa.

twitter: jattipaa

www.verkostoanatomia.fi

facebook: http://www.facebook.com/pages/Verkostoanatomia/189756439160

EDIT: English summary as the Google’s translation makes me look like an illiterate git. Mapping the Facebook friendship network and visualizing it with Gephi. The size of the node represents the amount of friends the MP has amongst other MP’s and the color represents the party.

Nyt kun presidentinvaalit ovat ohitse ja sosiaalisen median vaikutukset poliittiseen kampanjointiin on punnittu, voimme siirtyä suomalaisen arjen olennaisimpaan peruskysymykseen: kenellä eduskunnassa on eniten kavereita?

Usealla kansanedustajalla on joko henkilökohtainen profiili tai oma sivunsa, jonka kautta he pitävät yhteyttä äänestäjiinsä. Näistä profiileista ja sivuista raportoinut on esimerkiksi Verkkouutiset. Itseäni kiinnostaa pelkkien sivujen olemassaolon lisäksi se, miten kansanedustajat ovat toistensa kavereita. Jos tiedät kahden henkilön Facebook-id:n, voit kysyä Facebookilta, ovatko nämä kaksi kavereita keskenään. Tämän tiedon avulla voin hakea kaikkien Facebookissa olevien kansanedustajien kaverisuhteet toisiinsa.

Kuvassa pallon koko vastaa kavereiden lukumäärää ja väri puoluetta. Viiva edustajien välillä tarkoittaa kaverisuhdetta. Voimme todeta, että Arto Satonen (kok) voitti eduskunnan kaverikisan 124:llä kaverillaan. Miapetra Kumpula-Natri (sd) oli kakkonen 111 ja Merja Kyllönen (vas) täpärä kolmonen 110:llä kaverillaan. Jos ei muuta voi sanoa, niin nämä kolme ovat kansanedustajien keskuudessa ainakin aktiivisimpia kaverikutsujen lähettäjiä.

Keskimäärin kavereita edustajilla oli 42 kappaletta ja kaveriverkoston halkaisija (eli kuinka monella askeleella kaksi kauimmaista edustajaa tavoittavat toisensa) oli neljä askelta. Puoleilla keskimäärin kavereita: sd 56, kok 50, kesk 42, vihr 42, vas 40, ps 30, kd 25, r 20. Siis RKP, mars kavereita kyselemään!

Verkostoanalyytikolle mielenkiintoista on edellämainittujen lisäksi puolueiden väliset kaverisuhteet. Kuvassa olivat kansanedustajat sijoittuneet selkeästi kaveriporukoihin. Mitä keskemmällä henkilö on, sitä useammassa kaveriporukassa tällä on kavereita. Kaveriporukat näyttävät muodostuvan puoluerajojen mukaisesti.  Silmiin pomppaa RKP:n ja Perussuomalaisten kaverisuhteiden puute.  Alla olevassa kuvassa on visualisoitu puolueiden välisten kaverisuhteiden lukumäärä (viivan paksuus ja luku vastaavat kaverisuhteiden lukumäärää).

Määrällisesti demareiden ja kokoomuksen välillä on eniten kaverisuhteita. RKP ja Perussuomalaiset eivät ole kovinkaan läheisissä väleissä keskenään, mutta Vihreiden ja KD:nkään välillä ei liiemmin kaveripyyntöjä ole lähetelty.

Kiitos Teemo Tebestille, joka auttoi kaivamaan kansanedustajien yhteystietoja. Jos joku haluaa itse kokeilla kansanedustajien kaverisuhteiden visualisoimista, tässä tiedosto. Verkostot on visualisoitu Gephillä, ja apua visualisointiin voi hakea näiden ohjeiden loppupäästä.

Jos kiinnostaa tietää enemmän, mitä Facebookissa ja sosiaalisessa mediassa tapahtuu, käykää kirjautumassa Sometrik-palvelun betaversioon (maksuton eikä vaadi mitään asennuksia).

twitter: jattipaa

www.verkostoanatomia.fi

facebook: http://www.facebook.com/pages/Verkostoanatomia/189756439160

Sosiaalisen median merkitystä presidentivaaleissa on ruodittu tarkkaan niin perinteisissä kuin uudemmissakin medioissa. Hyviä kiteytyksiä on esim. Karri Anttilalla ja Harto Pönkällä. Myös jotain huvittavia paniikkireaktioita on ollut havaittavissa.

En mene tässä kirjoituksessa syvemmällä sosiaalisen median vaikutuksiin vaan keskityn siihen mitä sosiaalisesta mediasta saadaan irti. Itselleni Facebookin, Twitterin yms. viehätys tulee niiden tarjoamasta mahdollisuudesta saada ihmisten vuorovaikutuksesta helposti dataa jatkojalostukseen.

Ajatusleikkinä kokeilen voiko Facebook-sivujen aktiivisuustiedoilla ennustaa vaalituloksia? En tarkoita yksinkertaista ja hieman naiivia tykkäysten määrän laskemista vaan sivuilla tapahtuvan vuorovaikutuksen analyysiä.

Hain ehdokkaiden kaikki sellaiset henkilöt, jotka ovat aktivoituneet vain ja ainoastaan kahden ehdokkaan sivuilla. Aktivoituminen tässä tarkoittaa sivun seinälle kirjoittamista/linkkien yms. julkaisua, kommentointia ja näiden tykkäyksiä. Hain Sometrik-palvelulla (maksuton ja avoin beta-versio) presidentivaaliehdokkaiden Facebook-kampanjasivuilta tietoa siitä, miten sivulla ollaan aktivoiduttu.

Ajatusleikissä vain kahden ehdokkaan sivulla aktivoituminen merkitsee tasapainoilua ehdokkaiden välillä, ja jos ensimmäinen ehdokas putoaa, äänestää aidallaseisoja jäljelle jäänyttä. Näin ensimmäisellä kierroksella pudonneiden ehdokkaiden kannattajien äänet jakautuisivat:

Toisella kierroksella Haaviston taakse siirtyisi enemmän väkeä Eva Biaudet’lta (75 %) ja  Paavo Arhinmäeltä (69 %). Niinistön taakse tulisi selkeästi eniten väkeä Sari Essayahilta (65 %). Muilla jakautuisi aktiivisuus miltei tasan molemmille.

Kun pudonneiden äänisaalis jaetaan näiden painokertoimien mukaan ja mukaan lasketaan Niinistön ja Haaviston omat äänisaalit, saamme toisen kierroksen tulokseksi

Niinistö 61 % ja Haavisto 39 %.

Ajanjakso oli kuukausi ennen ensimmäistä kierrosta 19.12.2011-19.1.2012. Halusin saada kaikkien ehdokkaiden vuorovaikutustiedot, ja poliittisilla kampanjasivuilla on tapana hiipua heti kisan päätyttyä. Yleiset aktiivisuustiedot (esim. kuinka suuren osan tykkääjistään sivu on saanut liikkeelle) voi katsoa Sometrikista.

Kuten sanottu, kyseessä on ajatusleikki, mutta odotan mielenkiinnolla toteutuneita tuloksia.

twitter: jattipaa

www.verkostoanatomia.fi

facebook: http://www.facebook.com/pages/Verkostoanatomia/189756439160

*otsikossa on kysymysmerkki kunnianosoituksena iltapäivälehdille. Jos lisää kysymysmerkin, ei varsinaisesti väitä mitään.

Edit: I’ve jumped the gun: the Markkinointiviestinnän viikot #-tag was changed. This is the new version. Note self: check the #-tag beforehand…

Everything seems to happen sporadically . This is also true in Finland as the Mindtrek event in Tampere and – aptly named two day event – Markkinointiviestinnän viikko (Week of marketing communications) in Helsinki coincide in the same week. Luckily one is able to follow both via twitter with the #tags #mindtrek and #2011mvv   (+  #mvv2011). Moreover we can visualize the conversations happening in both. Do they overlap, which event activates more people and conversation and who orchestrates the communication etc? In this picture I have combined the tweets of the two events (at 2.20 PM).

The two events seem to overlap but two distinctive groups are formed: Mindtrek on the left and MVV on the right. There are total 446 tweeters combined.  The size of the node represents the bridgespanning role of the person: the bigger the node the between the two groups tweets the person is. We see that   @vesilola, @pauliinamakela, @mindtrek_ and @arimarjamaki ‘s tweets connect the two events.

Looking at the two events separately we can detect the most mentioned people. The size of the node represents the amount of tweets received and the color of the node the persons activity in mentioning others.

In Mindtrek there are at the moment 187 different tweeters. @mindtrek_@vesilola are the most mentioned while @mindtrek is the most active.

In Markkinointiviestinnän viikot there are at the moment 289 different tweeters. @vesilola, @socialdistrict and @greenpeacesuomi are the most mentioned while @pauliinamakela and @eisoma the most active. The overall structure seems more dense than Mindtrek’s so there seems to be more going on in Helsinki.

This is a a snapshot of the situations. If you want to do similar analysis yourself instructions can be found in these slides. The tweets were gathered with NodeXL and visualized with Gephi.

twitter/jattipaa

www.verkostoanatomia.fi

Visualizing Twitter networks can make sense in the constant stream of tweets. We can detect different communities or active Tweeters. I have made a quick hands on guide for twitter hashtag visualization using Gephi and NodeXL:

 

twitter: jattipaa

www.verkostoanatomia.fi

facebook: http://www.facebook.com/pages/Verkostoanatomia/189756439160

I found out of the horrible Norway attacks an hour after the bombings in twitter. The shootings and extent of the murders were revealed a while later. Usually I gather the tweets for network visualization with NodeXL‘s script, but this time I offer only the dataset for researchers.

The data is 24 hours of tweets gathered every 5 minutes containing the word “oslo” from 4.35 PM (CET) Friday 22nd July. I cannot guarantee that every tweet is in this dataset. The file format is GraphML (you can use text editor to find the term “Tooltip” where the content of the tweet is).

Dataset

Let me know if you can make use of the data.

twitter: jattipaa