A couple of years ago – and still today – any unexplained phenomenon that included social media would simply be named “viral”. Virality means that idea/news/meme starts to spread without the help of the original source. This spreading happens by the infectious nature of the idea or by the influence of those who have come to contact to the viral agent. This has been both the dream and the nightmare of the marketing and PR departments. Last week the nightmare scenario occurred to the The Copyright Information and Anti-Piracy Centre in Finland (CIAPC).

In the spring 2012 the CIAPC contacted a Finnish man claiming copyright violations in a P2P network. Long story short: After some threatening emails by the CIAPC and the man’s refusal to pay a compensation the police performed a search and seizure operation. The seizure part included a 9-year old girl’s Winnie the Pooh labeled laptop. Last week, the man described the situation in a Facebook post (original in Finnish) that suddenly started spread through the Facebook’s share-function. Soon the main stream media caught on (first online article in Finnish) and by the end of the next day in even made its way to international media (TorrentFreak and TechCrunch). The result: a PR disaster for the CIAPC.

The original post has at the moment 2 655 Facebook shares. The video below is the dynamic network of the public sharing of the post. The data was gathered by Mikael Rekola using the 99analytics.com  social media analytics platform. Each line represents a share of post, not the post views.

The video visualizes how the original post was shared and re-shared in the first 48 hours of its publication. Largest portion of the shares happened before middle part of the video within the first 24 hours. Actually, 97 % of the public shares happened during the 48 hour period. Those users whose shares got the most re-shares joined the game early.  This means that that the time is of the essence if the PR departments wish to react to these events.

When we look at the time scale of the spreading, we notice a sharp increase in the shared posts between 8 and 11 A.M..  The cascade started from several sources, including politicians  Dan Koivulaakso and Jyrki Kasvi,  who shared the post around 9 A.M. The first news story increased the shares of the original post. Before that, most of the shares were re-shares. The role of main stream media in facilitating these viral phenomenon cannot be forgotten.

The picture below that holds all of the shares. Size of the node represents the amount of shares the user caused and the brightness of the color of the node represents the amount of comments and likes the share received.

Almost all of the shares became directly from the original post (73 %). Less than 4 % of the shares reached some sort of virality i.e. spread beyond the first sharer.The longest chain of shares expanded for 5 steps. ( In Facebook, users are in average 4 steps from one another). We also checked if a friend relationship is present in the shares. Of the public shares, only 14 % of sharing happened between friends. But in the second degree shares, friend relationship was present in 43 % of the shares. The long sharing chains are actually quite rare (pdf) and awareness doesn’t require sharing: for every share there are tens or hundreds of share views.

The power of main stream media to spread a message is unparalleled: the power of social media comes from the power of amplification and raising awareness.

Twitter: jattipaa

99analytics.com

 

EDIT: added some details on what the lines between the nodes represent.

EDIT: English summary as the Google’s translation makes me look like an illiterate git. Mapping the Facebook friendship network and visualizing it with Gephi. The size of the node represents the amount of friends the MP has amongst other MP’s and the color represents the party.

Nyt kun presidentinvaalit ovat ohitse ja sosiaalisen median vaikutukset poliittiseen kampanjointiin on punnittu, voimme siirtyä suomalaisen arjen olennaisimpaan peruskysymykseen: kenellä eduskunnassa on eniten kavereita?

Usealla kansanedustajalla on joko henkilökohtainen profiili tai oma sivunsa, jonka kautta he pitävät yhteyttä äänestäjiinsä. Näistä profiileista ja sivuista raportoinut on esimerkiksi Verkkouutiset. Itseäni kiinnostaa pelkkien sivujen olemassaolon lisäksi se, miten kansanedustajat ovat toistensa kavereita. Jos tiedät kahden henkilön Facebook-id:n, voit kysyä Facebookilta, ovatko nämä kaksi kavereita keskenään. Tämän tiedon avulla voin hakea kaikkien Facebookissa olevien kansanedustajien kaverisuhteet toisiinsa.

Kuvassa pallon koko vastaa kavereiden lukumäärää ja väri puoluetta. Viiva edustajien välillä tarkoittaa kaverisuhdetta. Voimme todeta, että Arto Satonen (kok) voitti eduskunnan kaverikisan 124:llä kaverillaan. Miapetra Kumpula-Natri (sd) oli kakkonen 111 ja Merja Kyllönen (vas) täpärä kolmonen 110:llä kaverillaan. Jos ei muuta voi sanoa, niin nämä kolme ovat kansanedustajien keskuudessa ainakin aktiivisimpia kaverikutsujen lähettäjiä.

Keskimäärin kavereita edustajilla oli 42 kappaletta ja kaveriverkoston halkaisija (eli kuinka monella askeleella kaksi kauimmaista edustajaa tavoittavat toisensa) oli neljä askelta. Puoleilla keskimäärin kavereita: sd 56, kok 50, kesk 42, vihr 42, vas 40, ps 30, kd 25, r 20. Siis RKP, mars kavereita kyselemään!

Verkostoanalyytikolle mielenkiintoista on edellämainittujen lisäksi puolueiden väliset kaverisuhteet. Kuvassa olivat kansanedustajat sijoittuneet selkeästi kaveriporukoihin. Mitä keskemmällä henkilö on, sitä useammassa kaveriporukassa tällä on kavereita. Kaveriporukat näyttävät muodostuvan puoluerajojen mukaisesti.  Silmiin pomppaa RKP:n ja Perussuomalaisten kaverisuhteiden puute.  Alla olevassa kuvassa on visualisoitu puolueiden välisten kaverisuhteiden lukumäärä (viivan paksuus ja luku vastaavat kaverisuhteiden lukumäärää).

Määrällisesti demareiden ja kokoomuksen välillä on eniten kaverisuhteita. RKP ja Perussuomalaiset eivät ole kovinkaan läheisissä väleissä keskenään, mutta Vihreiden ja KD:nkään välillä ei liiemmin kaveripyyntöjä ole lähetelty.

Kiitos Teemo Tebestille, joka auttoi kaivamaan kansanedustajien yhteystietoja. Jos joku haluaa itse kokeilla kansanedustajien kaverisuhteiden visualisoimista, tässä tiedosto. Verkostot on visualisoitu Gephillä, ja apua visualisointiin voi hakea näiden ohjeiden loppupäästä.

Jos kiinnostaa tietää enemmän, mitä Facebookissa ja sosiaalisessa mediassa tapahtuu, käykää kirjautumassa Sometrik-palvelun betaversioon (maksuton eikä vaadi mitään asennuksia).

twitter: jattipaa

www.verkostoanatomia.fi

facebook: http://www.facebook.com/pages/Verkostoanatomia/189756439160

Sosiaalisen median merkitystä presidentivaaleissa on ruodittu tarkkaan niin perinteisissä kuin uudemmissakin medioissa. Hyviä kiteytyksiä on esim. Karri Anttilalla ja Harto Pönkällä. Myös jotain huvittavia paniikkireaktioita on ollut havaittavissa.

En mene tässä kirjoituksessa syvemmällä sosiaalisen median vaikutuksiin vaan keskityn siihen mitä sosiaalisesta mediasta saadaan irti. Itselleni Facebookin, Twitterin yms. viehätys tulee niiden tarjoamasta mahdollisuudesta saada ihmisten vuorovaikutuksesta helposti dataa jatkojalostukseen.

Ajatusleikkinä kokeilen voiko Facebook-sivujen aktiivisuustiedoilla ennustaa vaalituloksia? En tarkoita yksinkertaista ja hieman naiivia tykkäysten määrän laskemista vaan sivuilla tapahtuvan vuorovaikutuksen analyysiä.

Hain ehdokkaiden kaikki sellaiset henkilöt, jotka ovat aktivoituneet vain ja ainoastaan kahden ehdokkaan sivuilla. Aktivoituminen tässä tarkoittaa sivun seinälle kirjoittamista/linkkien yms. julkaisua, kommentointia ja näiden tykkäyksiä. Hain Sometrik-palvelulla (maksuton ja avoin beta-versio) presidentivaaliehdokkaiden Facebook-kampanjasivuilta tietoa siitä, miten sivulla ollaan aktivoiduttu.

Ajatusleikissä vain kahden ehdokkaan sivulla aktivoituminen merkitsee tasapainoilua ehdokkaiden välillä, ja jos ensimmäinen ehdokas putoaa, äänestää aidallaseisoja jäljelle jäänyttä. Näin ensimmäisellä kierroksella pudonneiden ehdokkaiden kannattajien äänet jakautuisivat:

Toisella kierroksella Haaviston taakse siirtyisi enemmän väkeä Eva Biaudet’lta (75 %) ja  Paavo Arhinmäeltä (69 %). Niinistön taakse tulisi selkeästi eniten väkeä Sari Essayahilta (65 %). Muilla jakautuisi aktiivisuus miltei tasan molemmille.

Kun pudonneiden äänisaalis jaetaan näiden painokertoimien mukaan ja mukaan lasketaan Niinistön ja Haaviston omat äänisaalit, saamme toisen kierroksen tulokseksi

Niinistö 61 % ja Haavisto 39 %.

Ajanjakso oli kuukausi ennen ensimmäistä kierrosta 19.12.2011-19.1.2012. Halusin saada kaikkien ehdokkaiden vuorovaikutustiedot, ja poliittisilla kampanjasivuilla on tapana hiipua heti kisan päätyttyä. Yleiset aktiivisuustiedot (esim. kuinka suuren osan tykkääjistään sivu on saanut liikkeelle) voi katsoa Sometrikista.

Kuten sanottu, kyseessä on ajatusleikki, mutta odotan mielenkiinnolla toteutuneita tuloksia.

twitter: jattipaa

www.verkostoanatomia.fi

facebook: http://www.facebook.com/pages/Verkostoanatomia/189756439160

*otsikossa on kysymysmerkki kunnianosoituksena iltapäivälehdille. Jos lisää kysymysmerkin, ei varsinaisesti väitä mitään.

Vaalirahajupakan jälkeen julkisuudessa on käyty keskustelua puolueiden kyvystä tavoittaa äänestäjät pienemmällä kassalla. Sosiaalista mediaa on arvuuteltu yhdeksi “halvaksi” kanavaksi. Hinnasta en osaa sanoa mitään, mutta sosiaalinen media antaa mahdollisuuden tutkia puolueiden sekä niiden kannattajien / tykkääjien välistä dynamiikkaa.

Kuten totesin aiemmassa, puolueiden twitter-seuraajia käsittelevässäni postauksessa, sosiaalisen median yksi vahvuus näin tutkijan näkökulmasta on tiedon helppo saatavuus. Twitteristä tietoa saa helposti, Facebookin suhteen pitää nähdä hieman vaivaa, mutta tietoa siitä saa ainakin Suomessa huomattavan paljon enemmän. Vaikka keskustelua on ollut paljon, ovatko tulevat vaalit sosiaalisen median vaalit (Harto Pönkä teki laajan analyysin, Karri Anttila myös perehtyi verkkoläsnäoloon, myös Kairojenkulkija on pohtinut aihetta), voi tiedoista kuitenkin tehdä päätelmiä.

Pelkkiä seuraajalukuja katsomalla ei tule paljon viisaammaksi. Siitä, onko puolueella paljon ainutkertaisia seuraajia tai mitkä puolueet jakavat seuraajansa, saadaan kuitenkin tietoa. Mukana on paljon sellaisia, jotka seuraavat kaikkia puolueita, mutta myös sellaisia, jotka seuraavat vain muutamaa tai yhtä. Näiden tietojen ja verkostoanalyysin avulla voidaan laskea eri puolueiden suhteellinen sijainti toisiinsa nähden – kenen kanssa äänistä taistellaan.

Huomaamme, että Keskustan ja Kokoomuksen tykkääjät ovat samankaltaisia. SDP:n ja Kokoomuksen välillä käydään myös kisaa äänestäjistä. Vihreät ja Vasemmistoliitto ovat taistelupari, kuten ovat myös Kristillisdemokraatit ja Perussuomalaiset. Nimen koko vastaa tykkääjien lukumäärää ja pallon väri ainutkertaisten tykkääjien lukumäärää: mitä tummempi väri, sitä enemmän tykätään vain ja ainoastaan k.o. puolueesta.

Jostain syystä en saanut Muutos 2011 -puolueesta tykkääjiä irti 500 enempää, vaikka niitä sivujen mukaan niitä on yli 2300. Puolueen asema ja koko eivät tästä syystä ole kovinkaan vertailukelpoisia.

Yhteensä kaikilla puolueilla on 26073 tykkääjää, joista 1065 on samoja. Käytännössä tämä tarkoittaa, että “Tykkää”-nappia klikkaa vain sellainen, joka tykkää vain yhdestä puolueesta. Uteliaat voivat siis käydä katsomassa yksittäistä puolueen sivua, mutta tykkäämiseen Suomessa on yllättävän iso kynnys. Puolueiden viestinnässä tämä tarkoittaa, että Facebookin kautta tavoitat suoraan jo aatteen omaksuneet, mutta yleisesti politiikasta kiinnostuneita on vaikeampi tavoittaa.

www.verkostoanatomia.fi

Facebook: Verkostoanatomia
twitter: jattipaa


Seuraajat puolueittain (tiedot kerätty 7.-14.2.2011, joten ovat jo nyt varmaan vanhoja):

Perussuomalaiset 5922
Piraattipuolue 3252
Vihreät 2889
Vasemmistoliitto 2871
SDP 2786
Kokoomus 2667
Muutos 2011 2354

Keskusta 1794

RKP 1260
Kristillisdemokraatit 997
Suomen kommunistinen puolue 488
Vapauspuolue 275
Itsenäisyyspuolue 195
Köyhien asialla 154
Suomen senioripuolue 27
Kommunistinen Työväenpuolue    n.a.
Suomen Työväenpuolue    n.a.

 

Kuva tehty Gephillä